A = \(\dfrac{x+3}{\sqrt{x}+1}\); \(x\) = 9 - 4\(\sqrt{2}\)
Thay \(x\) = 9 - 4\(\sqrt{2}\) vào biểu thức A = \(\dfrac{x+3}{\sqrt{x}+1}\) ta có:
A = \(\dfrac{9-4\sqrt{2}+3}{\sqrt{9-4\sqrt{2}}+1}\) = \(\dfrac{12-4\sqrt{2}}{\sqrt{8-4\sqrt{2}+1}+1}\)
A = \(\dfrac{12-4\sqrt{2}}{\sqrt{\left(2\sqrt{2}-1\right)^2}+1}\) = \(\dfrac{12-4\sqrt{2}}{2\sqrt{2}-1+1}\)
A = \(\dfrac{12-4\sqrt{2}}{2\sqrt{2}}\) = \(\dfrac{2\sqrt{2}\left(3\sqrt{2}-2\right)}{2\sqrt{2}}\)
A = 3\(\sqrt{2}\) - 2