Nguyễn Anh Khoa

Cho a, b, c là các số dương thỏa abc=1. Chứng minh:

\(\frac{1}{a^2+2b^{ }^2+3}+\frac{1}{b^{ }^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

Lightning Farron
25 tháng 1 2017 lúc 9:09

đề ẩu quá chả muốn làm

Bình luận (0)
Lightning Farron
25 tháng 1 2017 lúc 9:14

Ta có: \(\left\{\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\)

Tương tự ta có:\(\left\{\begin{matrix}\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\\\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\end{matrix}\right.\)

Cộng theo vế của 3 BĐT trên ta có:

\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}\) (Đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}abc=1\\a=b=c\\a,b,c>0\end{matrix}\right.\)\(\Rightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Yến Vy
Xem chi tiết
soyeon_Tiểubàng giải
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nguyễn Yến Vy
Xem chi tiết
phan thị minh anh
Xem chi tiết
ank viet
Xem chi tiết
phan thị minh anh
Xem chi tiết
TÉT TÉT
Xem chi tiết
phantuananh
Xem chi tiết