áp dụng BDT AM-GM
\(=>a+b\ge2\sqrt{ab}\)
\(=>b+c\ge2\sqrt{bc}\)
\(=>c+a\ge2\sqrt{ca}\)
\(=>VT\ge2.2.2\sqrt{ab.bc.ca}=8abc\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c
Áp dụng bất đẳng thức AM-GM:
\(a+b\ge2\sqrt{ab}\left(1\right)\\ a+c\ge2\sqrt{ac}\left(2\right)\\ b+c\ge2\sqrt{bc}\left(3\right)\)
Nhân vế theo vế \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\ge\right)8abc\) ( với \(a,b,c\ge0\) )