Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DE}=\overrightarrow{AE}\)(quy tắc 3 điểm mở rộng)
Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DE}=\overrightarrow{AE}\)(quy tắc 3 điểm mở rộng)
cho 6 điểm A, B , C , D , E , F bất kì trên mặt phẳng
chứng minh a, \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
b , \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)
C, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}=\overrightarrow{ÀF}+\overrightarrow{BD}+\overrightarrow{CE}\)
Cho hbh ABCD tâm O: Tính
a, \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\)
b, \(\overrightarrow{AC}+\overrightarrow{DA}\)
c. \(\overrightarrow{AB}+\overrightarrow{CD}\)
d. \(\overrightarrow{AB}+\overrightarrow{OA}\)
e, \(\overrightarrow{AB}+\overrightarrow{AD}\)
f, \(\overrightarrow{OA}+\overrightarrow{OC}\)
G. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
h. \(\overrightarrow{DA}+\overrightarrow{DC}+\overrightarrow{BD}\)
Cho tứ giác ABCD gọi M,I lần lượt là trung điểm AD và BC
a) CMR : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}=\overrightarrow{2MI
}
\)
b) Gọi G là trung điểm MI. CMR : \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
c) Chứng minh với O bất kì ta có : \(\overrightarrow{OA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{OG}\)
d) Gọi E là trọng tâm tam giác ABD CM: 3 điểm C,G,E thẳng hàng.
AI GIÚP MIK PHẦN C VÀ D VỚI Ạ MIK CÁM ƠN NHÌU!!!
1) Cho tam giác ABC với M, N lần lượt là trung điểm của đoạn AB và AC. Khi đó tổng \(\overrightarrow{NA}+\overrightarrow{NB}\) bằng ?
2) Khẳng định nào sau đây đúng? (có giải thích)
A. \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}\)
B. \(\overrightarrow{MP}+\overrightarrow{NM}=\overrightarrow{NP}\)
C. \(\overrightarrow{CA}+\overrightarrow{BA}=\overrightarrow{CB}\)
D. \(\overrightarrow{AA}+\overrightarrow{BB}=\overrightarrow{AB}\)
Cho tam giác ABC. Gọi G là trọng tâm, D là điểm đối xứng của G qua B.
Đặt \(\overrightarrow{AG}=\overrightarrow{a},\overrightarrow{AD}=\overrightarrow{b},tính\overrightarrow{AC,}\overrightarrow{AB}theo\overrightarrow{a},\overrightarrow{b}\)
Cho tam giác ABC
a) Dựng tổng \(\overrightarrow{AB}+\overrightarrow{CB}\)
b) Dựng tổng \(\overrightarrow{AC}+\overrightarrow{BA}\)
c) Dựng tổng \(\overrightarrow{BC}+\overrightarrow{BA}\)
Cho hình bình hành ABCD, M và N là 2 trung điểm của AB và CD sao cho \(\overrightarrow{AB}=3\overrightarrow{AM}\)và \(\overrightarrow{CD}=2\overrightarrow{CN}\)
a, Tính \(\overrightarrow{AN}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, Gọi G là trọng tâm tam giác BMN. Tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c, Gọi I là điểm sao cho \(\overrightarrow{BI}=k.\overrightarrow{BC}\). Tính \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\). Tìm k để \(\overrightarrow{AI}\) đi qua G
Cho các điểm A, B, C, D, E. Xác định cá điểm O,I, K sao cho:
1) \(\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow{0}\)
2) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\)
3) \(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}+3\left(\overrightarrow{ID}+\overrightarrow{KE}\right)=\overrightarrow{0}\)
Cho hình bình hành ABCD. Gọi M,N lần lượt là trung điểm của BC, AD
a, Tìm tổng các vecto: \(\overrightarrow{AC}\) và \(\overrightarrow{NC}\) ; \(\overrightarrow{AM}\) và \(\overrightarrow{AB}\) ; \(\overrightarrow{AD}\) và \(\overrightarrow{NC}\)
b, CMR: \(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{AD}\)