Cho 3 điểm A,B,C không thẳng hàng và điểm M thỏa mãn \(MA^{\rightarrow}=xMB^{\rightarrow}+yMC^{\rightarrow}\). Tính P = x-y
Trong mặt phẳng xOy có 2 vectơ đơn vị trên 2 trục là \(i\rightarrow,j\rightarrow\). Cho \(v\rightarrow=ai\rightarrow+bj\rightarrow\) , nếu \(v\rightarrow.j\rightarrow=3;v\rightarrow.i\rightarrow=2\) thì (a;b) là cặp số nào ?
Cho hình bình hành ABCD tâm O , hai điểm M,N di động thỏa mãn hệ thức \(MN^{\rightarrow}=MA^{\rightarrow}+MB^{\rightarrow}+MC^{\rightarrow}+MD^{\rightarrow}\). CM : MN luôn đi qua một điểm cố định
Cho hình bình hành ABCD tâm O . Hãy tính các véc tơ sau theo \(AB^{\rightarrow}\)và \(AD^{\rightarrow}\)
a)\(AI^{\rightarrow}\) với I là trung điểm của BO
b) \(BG^{\rightarrow}\)với G là trọng tâm Δ OCD
Cho tam giác ABC có các cạnh bằng a,b,c và trọng tâm G thỏa mãn \(a^2GA^{\rightarrow}+b^2GB^{\rightarrow}+c^2GC^{\rightarrow}=0^{\rightarrow}\). Tam giác ABC là tam giác gì ?
Cho Δ ABC đều , tâm O , M là điểm di động trên đường tròn cố định (O,b) (nằm trong Δ ). Gọi A',B',C' tương ứng là chân các đường vuông góc hạ từ M xuống các cạnh BC , CA , AB của và G' là trọng tâm Δ A'B'C'.
a) CMR : \(MA^{'\rightarrow}+MB^{'\rightarrow}+MC^{'\rightarrow}=\frac{3}{2}MO^{\rightarrow}\)
b) CMR : G' di động trên một đường tròn cố định
Cho Δ ABC có trực tâm H , O là tâm đường tròn ngoại tiếp . Tính \(OA^{\rightarrow}+OB^{\rightarrow}+OC^{\rightarrow}\)
Cho tam giác ABC, đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC. CA , AB lần lượt tại M , N , P.CM : a\(IM^{\rightarrow}\)+b\(IN^{\rightarrow}\)+c\(IP^{\rightarrow}\)=\(0^{\rightarrow}\)
Tam giác ABC, trọng tâm G. M, N là trung điểm AB, BC. I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\) và \(\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M, N, J thẳng hàng
b) J là trung điểm BI