\(\left|C\right|>C\Leftrightarrow C< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
\(\Rightarrow0\le x< 1\)
\(\left|C\right|>C\Leftrightarrow C< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
\(\Rightarrow0\le x< 1\)
\(C=\left(\dfrac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\dfrac{5}{2\sqrt{x}-3}\right)\div\left(3+\dfrac{2}{1-\sqrt{x}}\right)\)
a) Rút gọn C
b) Tính C với \(x=\dfrac{2}{2-\sqrt{3}}\)
c) Tìm x để C= –1
d) Tìm x để C > 0
e) So sánh C’ với –2
f) Tìm GRNN của C’ với C’=\(\dfrac{1}{C}\times\dfrac{1}{\sqrt{x}+1}\)
i)Tìm \(x\in Z\) để \(C'\in Z\) g) Tìm m để pt C’.m = –1 có nghiệm
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
Giúp mình với!
Cho biểu thức: C = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\times\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
a) Rút gọn C.
b) Tìm các giá trị của x để C = \(\sqrt{x}\)
c) Tìm giá trị của C, biết |2x - 5| = 3.
d) So sánh C và \(C^2\)
Cho \(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
a, Rút gọn P.
b, Tìm x để P=\(\sqrt{x}-1\).
c, Tìm xϵZ để PϵZ.
Cho biểu thức
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)-\(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) - \(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x ∈ Z để A nhận giá trị nguyên
f) Tìm GTNN của A
Cho biểu thức:
E = (\(\dfrac{1}{x+\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x}+1}\)) : \(\dfrac{2}{\sqrt{x}-2}\)
a) Rút gọn E
b) Tính giá trị E khi x = 19 - \(8\sqrt{3}\)
c) tìm x để E = -1
d) Tìm x để E = \(\dfrac{1}{\sqrt{x}}\)
e) Tìm x để E > 0
f) So sánh E với \(\dfrac{1}{2}\)
g) Tìm x \(\in\) Z để \(\dfrac{1}{E}\)\(\in\) Z
h) Với x > 4. So sánh: E và \(\sqrt{E}\)
Cho P= \((\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{x}}):(\dfrac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^{2}})\)
a) Rút gọn P
b) so sánh P với \(\dfrac{3}{4}\).
c) tìm x để P=1
P = (\(\dfrac{2\sqrt{x}}{\sqrt{x}}-\dfrac{x-4}{\sqrt{x}+2}\)). \(\dfrac{1}{\sqrt{x}-2}\)
a Tìm đkxđ rồi rút gọn P
b Tìm x để P = \(\dfrac{2}{3}\)
c Tính p khi x = 8\(-\)2\(\sqrt{7}\)