\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1\)
Pt có nghiệm khi \(2m-1\ge0\Rightarrow m\ge\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(x_1\left(x_2-1\right)=x_2\)
\(\Leftrightarrow x_1x_2-x_1-x_2=0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)=0\)
\(\Leftrightarrow m^2+2-2\left(m+1\right)=0\)
\(\Leftrightarrow m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0< \dfrac{1}{2}\left(loại\right)\\m=2\end{matrix}\right.\)