(a) Với \(x\ge0,x\ne4\), ta có:
\(A=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
Để \(A\le5\Rightarrow2\sqrt{x}+1\le5\)
\(\Leftrightarrow2\sqrt{x}\le4\Leftrightarrow\sqrt{x}\le2\Leftrightarrow0\le x\le4\).
Kết hợp với điều kiện thì: \(0\le x< 4.\)
(b) \(\dfrac{A}{2}=\dfrac{2\sqrt{x}+1}{2}\) nguyên khi \(\left(2\sqrt{x}+1\right)\in B\left(2\right)=\left\{0;2;4;...;2n\right\}\left(n\in N\right)\)
\(\Leftrightarrow\sqrt{x}\in\left\{-\dfrac{1}{2};\dfrac{1}{2};\dfrac{3}{2};...;\dfrac{2n+1}{2}\right\}\left(n\in N\right)\)
Hay: \(\sqrt{x}\in\left\{\dfrac{1}{2};\dfrac{3}{2};...;\dfrac{2n+1}{2}\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{4};\dfrac{9}{4};...;\dfrac{\left(2n+1\right)^2}{4}\right\}\)