a. 5 - 3(x + 4) = -1
⇔ 5 - 3x - 12 = -1
⇔ 3x = -1 - 5 + 12
⇔ 3x = 6
⇔ x = 2
\(d,2x^2-3=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
\(e,x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
a)\(=>3\left(x+4\right)=6=>x+4=2=>x=-2\)
b)\(=>x-1-x-2=0\)
\(=>-3=0\left(vl\right)\) => x ko tồn tại
c)\(=>\dfrac{1}{2}+x-\dfrac{1}{3}+x=0=>\dfrac{1}{6}+2x=0\)
\(=>2x=-\dfrac{1}{6}=>x=-\dfrac{1}{12}\)
d)\(=>2x^2=8=>x^2=4=>\left[{}\begin{matrix}x=\sqrt{4}=2\\x=-\sqrt{4}=-2\end{matrix}\right.\)
\(g,\Leftrightarrow\dfrac{1}{3}x^2=\dfrac{4}{3}\)
\(\Leftrightarrow x^2=\dfrac{4}{3}:\dfrac{1}{3}\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
c. (\(\dfrac{1}{2}\)+ x) - (\(\dfrac{1}{3}\)- x) = 0
⇔ \(\dfrac{1}{2}\)+ x - \(\dfrac{1}{3}\)+ x = 0
⇔ \(\dfrac{1}{6}\)+ x = 0
⇔ x = \(\dfrac{-1}{6}\)