\(B=\dfrac{a^2+b^2}{ab}+\dfrac{ab}{a^2+b^2}\)
\(=\dfrac{a^2+b^2}{4ab}+\dfrac{ab}{a^2+b^2}+\dfrac{3\left(a^2+b^2\right)}{4ab}\)
\(\ge2\sqrt{\dfrac{a^2+b^2}{4ab}.\dfrac{ab}{a^2+b^2}}+\dfrac{3.2ab}{4ab}\)
\(=1+\dfrac{3}{2}=\dfrac{5}{2}\)
\(\Rightarrow minB=\dfrac{5}{2}\Leftrightarrow a=b>0\)
Áp dụng bất đẳng thức cosi
B>= 2. căn ab(a^2 +b^2)/ab(a^2 +b^2)
=2. căn 1
=2
MinB=2 <=> a=b>0