\(x\left(x-y\right)+y\left(x+y\right)=x^2-xy+xy+y^2=x^2+y^2=\left(-6\right)^2+8^2=100\)
a, \(x\left(x-y\right)+y\left(x+y\right)\\\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
Thay x=-6, y=8 vào \(x^2+y^2\) ta có:
\(\left(-6\right)^2+8^2=36+64=100\)
Vậy ...
\(x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2=100\)