\(0,1.\sqrt{400}+0,2.\sqrt{1600}\\ =0,1.20+0,2.40\\ =2+8\\ =10\)
\(0,1.\sqrt{400}+0,2.\sqrt{1600}=0,1.20+0,2.40\)\(=2+8=10\)
\(0,1.\sqrt{400}+0,2.\sqrt{1600}\\ =0,1.20+0,2.40\\ =2+8\\ =10\)
\(0,1.\sqrt{400}+0,2.\sqrt{1600}=0,1.20+0,2.40\)\(=2+8=10\)
So sánh:
a)\(A=\sqrt[]{21}+\sqrt{42}+\sqrt{63}\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
b)\(A=\left(1-\frac{1}{\sqrt{4}}\right)\left(1-\frac{1}{\sqrt{16}}\right)\left(1-\frac{1}{\sqrt{100}}\right)\)
\(B=\sqrt{0,1}\)
c) \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)
\(B=10\)
5\(\sqrt{16}\)-4\(\sqrt{9}\)+\(\sqrt{25}\)-0,3\(\sqrt{400}\)
E = \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(\sqrt{1}+\sqrt{4}+\sqrt{9}+.........+\sqrt{400}+\sqrt{441}\)
Bài 1. Tìm số nguyên x biết:
a) \(\sqrt{x}+98=498\)
b) \(\frac{9}{7}+\sqrt{\frac{1600}{100}}-x+5=\frac{1920}{17}\)
c) \(3728+\left(-x\right)=0\)
d) \(\left(-45\right)+6-\sqrt{x}=43\)
Bài 2. Tìm số nguyên a, b biết
\(a^2+\sqrt{b}=9\)
Zúp tui dzới nha :>
Tính \(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)
100 x \(\sqrt{0,01}\) - 0,5 x \(\sqrt{400}\) + \(\sqrt{0,09}\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-\sqrt{400}\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)