7: Ta có: \(\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right):\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{\sqrt{6}}{3}\right)\cdot\sqrt{6}\)
\(=\dfrac{\sqrt{6}}{6}\cdot\sqrt{6}=1\)
8: ta có: \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(\sqrt{2}+1\right)^2-3\)
\(=3+2\sqrt{2}-3\)
\(=2\sqrt{2}\)
7)\(\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right):\dfrac{1}{\sqrt{6}}=\dfrac{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}{\sqrt{6}}.\sqrt{6}=3-2=1\)
8) \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)=\left(1+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2=1+2+2\sqrt{2}-3=2\sqrt{2}\)