\(-\dfrac{6}{x}=-\dfrac{x}{24}\)
\(\Leftrightarrow-6.24=-x.x\)
\(\Leftrightarrow-144=-x^2\)
\(\Leftrightarrow x^2=144\)
\(\Leftrightarrow x=\pm12\)
Vậy \(S=\left\{12;-12\right\}\)
`-6/x=-x/24`
`<=>-x.x=-6.24`
`<=>-x^2=-144`
`<=>x^2=144`
`<=>x^2=12^2` hoặc `x^2=(-12)^2`
`<=>x=12` hoặc `x=-12`
Vậy `x in {12;-12}
\(-\dfrac{6}{x}=-\dfrac{x}{24}\\ \Leftrightarrow\dfrac{6}{x}=\dfrac{x}{24}\\ \Leftrightarrow x.x=24.6\\ \Leftrightarrow x^2=144\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\)