\(\Rightarrow\left(3x-2-5-2x\right)\left(3x-2+5+2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-7=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
\(\left(2x-5\right)^2-\left(5+2x\right)^2=0\)
\(\Rightarrow\left(2x-5\right)^2+\left(2x-5\right)^2=0\)
Do \(\left(2x-5\right)^2\ge0\)
\(\Rightarrow\left(2x-5\right)^2=0\)
\(\Rightarrow2x-5=0\)
\(\Rightarrow x=\dfrac{5}{2}\)
\(\left(3x-2\right)^2-\left(5+2x\right)^2=0\)
\(\Leftrightarrow\left(3x-2-5-2x\right)\left(3x-2+5+2x\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\5x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
\(\left(3x-2\right)^2-\left(2x+5\right)^2=0\)
\(\Leftrightarrow\left(3x-2-2x-5\right)\left(3x-2+2x+5\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{3}{5}\end{matrix}\right.\)