a) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(a+b+c-b-c\right)^2\)
\(=a^2\)
b: \(=\left(a+b+c\right)^2+2a^2+2b^2+2c^2-2ab-2ac-2bc-3\left(a^2+b^2+c^2\right)\)
\(=3a^2+3b^2+3c^2-3a^2-3b^2-3c^2\)
=0
a: \(=\left(a+b+c-b-c\right)^2=a^2\)
a,(a+b+c-c)2=a2
b,(a+b+c)2+2a2+2b2+2c2-2ab-2ac-2bc-3(a2+b2+c2)=3a2+3b2+3c2-3a2-3b2-3c2=0