1 khai triển đẳng thức
a
b = x2 - 2.x.2y + (2y)2 = x2 - 4xy + 4y2
c
(5x+3y)^2
= (5x)^2 + 2.5x.3y + (3y)^2
= 25x^2 + 30xy + 9y^2
b) (x-2y)^2
= x^2 - 2.x.2y + (2y)^2
= x^2 - 4xy + 4y^2
c) (2x-3)^2
= (2x)^2- 2.2x.3 + 9
= 4x^2 -12x +9
1 khai triển đẳng thức
a
b = x2 - 2.x.2y + (2y)2 = x2 - 4xy + 4y2
c
(5x+3y)^2
= (5x)^2 + 2.5x.3y + (3y)^2
= 25x^2 + 30xy + 9y^2
b) (x-2y)^2
= x^2 - 2.x.2y + (2y)^2
= x^2 - 4xy + 4y^2
c) (2x-3)^2
= (2x)^2- 2.2x.3 + 9
= 4x^2 -12x +9
Triển khai hằng đẳng thức
a)\(\left(3-x\right)^2\)
b)\(\left(x-\frac{1}{2}\right)^2\)
c)\(\left(2x+y\right)^2\)
Dùng hằng đẳng thức để triển khai và thu gọn:
a) \(x\left(x-1\right).\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x+4\right).\left(x-4\right)\)
c) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
thức hiên phép nhân:
a)\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)
b)\(\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\)
1. tính
a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)
b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)
c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)
d) \(\left(\dfrac{1}{2}x-2y\right)^3\)
e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)
f) \(27x^3-8y^3\)
g) 4(2x - 3y) - 4 - (2x-3y)2
2. rút gọn
a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)
b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)
c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)
d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)
3. c/m các biểu thức sau ko phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
4. Tìm x
a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)
b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
c) \(49x^2+14x+1=0\)
d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
5. c/m biểu thức luôn dương:
a) \(A=16x^2+8x+3\)
b) \(B=y^2-5y+8\)
c) C= \(2x^2-2x+2\)
d) \(D=9x^2-6x+25y^2+10y+4\)
6. Tìm GTLN và GTNN của các biểu thức sau
a) \(M=x^2+6x-1\)
b) \(N=10y-5y^2-3\)
7. thu gọn
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)
b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
Bài 1 :
a) \(\left(6x^2+\frac{1}{3}\right)^2\)
b) \(\left(5x-4y\right)^2\)
c) \(\left(2x^2y-3y^2x\right)^2\)
d) \(\left(5x-3\right).\left(5x+3\right)\)
e) \(\left(-4xy-5\right).\left(5-4xy\right)\)
f) \(\left(a^2b+ab^2\right).\left(ab^2-a^2b\right)\)
g) \(\left(3x-4\right)^2+2.\left(3x-4\right).\left(4-x\right)+\left(4-x\right)^2\)
h) \(\left(a^2+ab+b^2\right).\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)
vận dụng hằng đẳng thức để khai triển và rút gọn
a) \(12\left(2x-5\right)^2-3\left(1+4x\right)\left(4x-1\right)\)
Bài 1 :Tìm x,y ,biết :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
Bài 2 : Chứng minh rằng các biểu thức sau không phụ thuộc vào các biến x,y:
D = \(\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
Tính theo kiểu hằng đẳng thức mở rộng
a) \(\left(x+2y\right)^3\)
b)\(\left(2x-y\right)^3\)
c)\(\left(x^2+x+1\right).\left(x-1\right)\)
d) \(\left(4x^2-2x+1\right).\left(2x+1\right)\)
Chứng minh các đẳng thức sau :
\(\left(\dfrac{2x+2y-z}{3}\right)^2+\left(\dfrac{2y+2z-x}{3}\right)^2+\left(\dfrac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)