a, \(\left(3-x\right)^2=9-6x+x^2\)
b, \(\left(x-\frac{1}{2}\right)^2=x^2-x+\frac{1}{4}\)
c, \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
a, \(\left(3-x\right)^2=9-6x+x^2\)
b, \(\left(x-\frac{1}{2}\right)^2=x^2-x+\frac{1}{4}\)
c, \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
Dùng hằng đẳng thức để triển khai và thu gọn:
a) \(x\left(x-1\right).\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x+4\right).\left(x-4\right)\)
c) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
vận dụng hằng đẳng thức để khai triển và rút gọn
a) \(12\left(2x-5\right)^2-3\left(1+4x\right)\left(4x-1\right)\)
1 khai triển đẳng thức
a\(\left(5x+3y\right)^2\)
b\(\left(x-2y\right)^2\)
c\(\left(2x-3\right)^2\)
Tính theo kiểu hằng đẳng thức mở rộng
a) \(\left(x+2y\right)^3\)
b)\(\left(2x-y\right)^3\)
c)\(\left(x^2+x+1\right).\left(x-1\right)\)
d) \(\left(4x^2-2x+1\right).\left(2x+1\right)\)
áp dụng công thức của hằng đẳng thức để khai triển
(3x-2)2 ; \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\) ; \(\left(a +b\sqrt{3}\right)^3\)
viết các biểu thức sau về dạng bình phương một tổng, một hiệu, một tích
\(4a^2+4a+1\\ 9x^2-6x+1\\ \dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
Chứng minh các hằng đẳng thức sau:
a) \(\left(ax+yy+cz\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
b) \(\left(ab+bc+ac\right)^2+\left(a^2-bc\right)+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2=\left(a^2+b^2+c^2\right)^2\)
Rút gọn rồi tính giá trị biểu thức :
a) \(A=\left(x+3\right)^2+\left(x-3\right).\left(x+3\right)-2.\left(x+2\right).\left(x-4\right)\); với x = \(-\frac{1}{2}\)
b) \(B=\left(3x+4\right)^2-\left(x-4\right).\left(x+4\right)-10x\); với x = \(-\frac{1}{10}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3.\left(x-2\right).\left(x+2\right)\); với x = 1
d) \(D=\left(x-3\right).\left(x+3\right)+\left(x-2\right)^2-2x.\left(x-4\right)\); với x = -1
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
dùng hằng đẳng thức để khai triển và thu gọn
a)\(\left(\dfrac{-1}{3}ab^2-2a^3b^{ }\right)^3\)
b)(x+1)3-(x-1)3-6(x-1)(x+1)