1:
ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
mà \(\overrightarrow{AB}=\left(2;1\right);\overrightarrow{DC}=\left(-x;3-y\right)\)
nên \(\left\{{}\begin{matrix}-x=2\\3-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
Vậy: D(-2;2)
2: ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
mà \(\overrightarrow{AB}=\left(-6;-3\right);\overrightarrow{DC}=\left(4-x;6-y\right)\)
nên \(\left\{{}\begin{matrix}4-x=-6\\6-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=9\end{matrix}\right.\)
Vậy: D(10;9)
ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
Gọi D(x;y)
a.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;3\right)\\\overrightarrow{DC}=\left(-x;3-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x=2\\3-y=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\) \(\Rightarrow D\left(-2;0\right)\)
b.
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-6;-3\right)\\\overrightarrow{DC}=\left(4-x;6-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4-x=-6\\6-y=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=9\end{matrix}\right.\) \(\Rightarrow D\left(10;9\right)\)
`1. D = (2 + 0 - 4 ; -2 + 3 - 1) = (-2;0)`
`2. D = (7+4-1 ; 2+6-(-1)) = (10;9)`