1) \(\dfrac{MI}{AB}=\dfrac{DI}{DB}=\dfrac{CN}{CB}\)
2) \(\dfrac{MI}{AB}=\dfrac{CN}{CB}=\dfrac{IN}{AB}\)
1: Xét ΔDAB có MI//AB
nên \(\dfrac{MI}{AB}=\dfrac{DM}{DA}\left(1\right)\)
Xét ΔCBA có IN//AB
nên \(\dfrac{CN}{CB}=\dfrac{IN}{AB}\)(2)
Xét hình thang ABCD có MN//AB//CD
nên \(\dfrac{AM}{MD}=\dfrac{BN}{NC}\)
=>\(\dfrac{AM+MD}{MD}=\dfrac{BN+NC}{NC}\)
=>\(\dfrac{AD}{DM}=\dfrac{BC}{NC}\)
=>\(\dfrac{DM}{DA}=\dfrac{CN}{CB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{MI}{AB}=\dfrac{CN}{AB}=\dfrac{IN}{AB}\)
2: Ta có: \(\dfrac{MI}{AB}=\dfrac{IN}{AB}\)
=>MI=IN