\(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{1;2\right\}\)
\(x^2-3x+2=0\)
\(\Delta=\left(-3\right)^2-4\cdot2=1>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-3\right)+\sqrt{1}}{2}=2\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-3\right)-\sqrt{1}}{2}=1\)