a: Để 2x-3/x-1 là số nguyên thì \(2x-3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1\right\}\)
hay \(x\in\left\{2;0\right\}\)
b: \(\left|x+6\right|+\left|x-4\right|=\left|x+6\right|+\left|4-x\right|\ge\left|x+6+4-x\right|=\left|10\right|=10\)
a. ta có : \(A=\dfrac{2x-3}{x-1}\)
\(2x-3⋮x-1\\ \Rightarrow\left(2x-2\right)-1⋮x-1\\ m\text{à}2x-2⋮x-1\left(x\in Z\right)\\ \Rightarrow1⋮\left(x-1\right)\\ \Rightarrow x-1\in\text{Ư}\left(1\right)=\left\{1;-1\right\}\)
ta có bảng sau :
x-1 | 1 | -1 |
x | 2 | 0 |
vậy......