\(a,=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\\ b,=\dfrac{x^4+2x^2y^2+y^4-2x^4-2y^4}{x^2+y^2}=\dfrac{-x^4+2x^2y^2-y^4}{x^2+y^2}\\ c,=\dfrac{3x^2-24x+45-2x^2+2}{12\left(x+1\right)\left(x-5\right)}=\dfrac{x^2-24x+47}{12\left(x+1\right)\left(x-5\right)}\\ d,=\dfrac{-5x-1-25x^2+15x}{x\left(5x-1\right)\left(5x+1\right)}=\dfrac{-\left(5x-1\right)^2}{x\left(5x-1\right)\left(5x+1\right)}=\dfrac{1-5x}{x\left(5x+1\right)}\)
b: \(=\dfrac{x^4+2x^2y^2+y^4-2x^4-2y^4}{x^2+y^2}=\dfrac{-\left(x^2-y^2\right)^2}{x^2+y^2}\)