Bài 3: Trường hợp bằng nhau thứ nhất của tam giác canh - cạnh - cạnh (c.c.c)

B. 80 ĐỘ NHÉ!!

TIK  MK NHA haha

Bình luận (0)
Nanno
27 tháng 2 lúc 20:46

B) 80

 

Bình luận (0)
lê đức anh
27 tháng 2 lúc 21:22

Ta thấy 2 tam giác bằng nhau : g.g.g hay \(\Delta DEF\sim\Delta HKI\)

\(\Rightarrow B.80^0\)

Bình luận (2)

a) Xét ΔDAB và ΔEAC có 

AD=AE(gt)

BD=CE(gt)

AB=AC(gt)

Do đó: ΔDAB=ΔEAC(c-c-c)

nên \(\widehat{BAD}=\widehat{CAE}\)(hai góc tương ứng)

\(\Leftrightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\)

\(\Leftrightarrow\widehat{EAB}=\widehat{DAC}\)(đpcm)

b) Ta có: M là trung điểm của BC(gt)

nên MB=MC

mà MB=MD+DB(D nằm giữa M và B)

và MC=ME+EC(E nằm giữa M và C)

nên MD+DB=ME+EC

mà DB=EC(gt)

nên MD=ME

Xét ΔAMD và ΔAME có

AD=AE(gt)

AM chung

MD=ME(cmt)

Do đó: ΔAMD=ΔAME(c-c-c)

nên \(\widehat{DAM}=\widehat{EAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AD,AE

nên AM là tia phân giác của \(\widehat{DAE}\)(đpcm)

Bình luận (0)
Phong Thần
20 tháng 1 lúc 11:02

Xét △ABC và △AED có

AB=AE(gt)

BAC =EAD( đối đỉnh)

AC=AD(gt)

Vậy △ABC=△AED(c-g-c)

 

Bình luận (1)
Nguyễn Lê Phước Thịnh
30 tháng 12 2020 lúc 12:22

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

Vậy: \(\widehat{BED}=90^0\)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE(đpcm)

Bình luận (0)
Bánh Đậu Xanh
30 tháng 12 2020 lúc 15:18

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)

mà ˆBAD=900BAD^=900(ΔABC vuông tại A)

nên ˆBED=900BED^=900

Vậy: ˆBED=900BED^=900

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

hay BD⊥AE(đpcm)

Bình luận (0)
nguyen cham hoi
27 tháng 12 2020 lúc 20:06

bạn tự vẽ hình đc k

 

Bình luận (1)
Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 22:17

a) Xét ΔACM và ΔBMN có 

AM=BM(M là trung điểm của AB)

\(\widehat{AMC}=\widehat{BMN}\)(hai góc đối đỉnh)

CM=MN(gt)

Do đó: ΔAMC=ΔBMN(c-g-c)

b) Ta có: ΔAMC=ΔBMN(cmt)

nên \(\widehat{CAM}=\widehat{NBM}\)(hai góc tương ứng)

mà \(\widehat{CAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB)

nên \(\widehat{NBM}=90^0\)

\(\widehat{NBA}=90^0\)

hay NB⊥AB(đpcm)

c) Xét ΔAMN và ΔBMC có

MA=MB(M là trung điểm của AB)

\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)

MN=MC(gt)

Do đó: ΔAMN=ΔBMC(c-g-c)

⇒AN=BC(hai cạnh tương ứng) và \(\widehat{NAM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{NAM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Bình luận (0)
Nguyễn Minh khánh
13 tháng 12 2020 lúc 21:35

Giúp tôi với

Bình luận (0)
Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 18:26

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN