Ôn tập chương Hình trụ, Hình nón, Hình cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thúy Hường
Xem chi tiết
Lightning Farron
4 tháng 4 2017 lúc 17:34

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\)

Lại có: \(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

\(\Leftrightarrow a^2+2ab-a+b^2-b=a^2+b^2\)

\(\Leftrightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Khi đó \(Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)

Uyên Jelly
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
Nguyễn Hồng Pha
Xem chi tiết
ank viet
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
Sáng
31 tháng 3 2017 lúc 15:45

Ta có \(\sum\limits^{ }_{cyc}\dfrac{a^2-bc}{2a^2+b^2+c^2}=\sum\limits^{ }_{cyc}\dfrac{\left(a-c\right)\left(a+b\right)+\left(a-b\right)\left(a+c\right)}{2a^2+b^2+c^2}\)

\(=\sum\limits^{ }_{cyc}\left(a-c\right)\left(\dfrac{a+b}{2a^2+b^2+c^2}-\dfrac{b+c}{2a^2+b^2+c^2}\right)\)

\(=\sum\limits^{ }_{cyc}\dfrac{\left(a-c\right)^2\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(2a^2+b^2+c^2\right)\left(2c^2+b^2+a^2\right)}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Nguyễn Hữu Tuyên
Xem chi tiết
Sáng
31 tháng 3 2017 lúc 15:55

Áp dụng bất đẳng thức Holder ta được:

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

\(\left(1+b^3\right)\left(1+c^3\right)\left(1+c^3\right)\ge\left(1+bc^2\right)^3\)

\(\left(1+c^3\right)\left(1+a^3\right)\left(1+a^3\right)\ge\left(1+ca^2\right)^3\)

Nhân từng vế của 3 bất đẳng thức trên ta được:

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Họa Chinh
Xem chi tiết
Ngọc Hiền
5 tháng 4 2017 lúc 12:24

\(\Delta\)'=(-(3m+1))2-2m2+2m+19

=9m2+6m+1-2m2+2m+19

=7m2+8m+20

=3m2+(4m2+8m+4)+16

=3m2+(2m+2)2+16>0\(\forall\)m

=>phương trình luôn có hai nghiệm phân biệt với mọi m.

Huỳnh Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 21:26

Câu 2: 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là tia phân giác của góc BAC

c: Xét ΔBAC có 

AH là phân giác

BK là phân giác

AH cắt BK tại O

Do đó: O là tâm đường tròn nội tiếp

=>CO là phân giác của góc ACB