\(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(m^2-1\right)=4m^2-4m^2+4=4>0\)
\(\Rightarrow\) PT có 2 nghiệm phân biệt
Theo Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=m^2-1\end{matrix}\right.\)
Theo đề bài ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=1-\dfrac{2}{x_1x_2}\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=1-\dfrac{2}{x_1x_2}\)
\(\Leftrightarrow\dfrac{x_1+x_2+2}{x_1x_2}=1\)
\(\Leftrightarrow\dfrac{2m+2}{m^2-1}=1\)
\(\Leftrightarrow2m+2=m^2-1\)
\(\Leftrightarrow m^2-2m-3=0\)
\(\Leftrightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)