1) tìm giá trị nguyên của m để hệ phương trình \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
có nghiệm (x;y) thỏa mãn: x2 + 2y2 = 9
2) rút gọn biểu thức A=\(\dfrac{5\sqrt{a}-3}{\sqrt{a-2}}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\) với a>0, a≠1
Cho hệ phương trình \(\hept{\begin{cases}mx-2y=2m-1\\2x-my=9-3m\end{cases}}\)
a) tìm m để hệ phương trình có nghiệm duy nhất (x;y) tìm nghiệm duy nhất đó
b) Với x, y vừa tìm được ở trên
+tìm hệ thức liên hệ giữa x, y không phụ thuộc vào m
+ tìm m \(\in\)Z để x, y nguyên
+ tìm m để S = 2x2 - y2 đạt GTNN
+ tìm m để T = xy đạt GTLN
\(Đk:m\ne\dfrac{1}{2}\)
\(x=\dfrac{-3}{1-2m}\); \(y=\dfrac{4-5m}{1-2m}\)
Tìm m để \(x=|y|\)
Cho x,y thoả mãn \(\hept{\begin{cases}x^2+y^2=m^2+2m-3\\x+y=2m-1\end{cases}}\)
Tìm m để tích xy đạt GTNN
cho hàm số y bằng ( 3m +2 ).2 + 5 ( m khác -1 ) và y bằng -x-1 có đồ thị cắt nhau tại A(X,Y). tìm m để p bằng y^2 + 2x -3 đạt gtnn
Cho hàm số y=(3m-4)x\(^2\) với m\(\ne\)\(\dfrac{4}{3}\). Tìm các giá trị của tham số m để hàm số :
a) Đạt giá trị lớn nhất là 0
b) Đạt giá trị nhỏ nhất là 0
Tìm x để A = \(\dfrac{2m}{m^{^2}+1}\) đạt min
Cho pt:\(x^2\)-2(m-1)x-m-3=0.
Tìm m >1 để bt A=\(\dfrac{2x^2_1+2x^2_2-2x_1x_2}{x_1+x_2}\)đạt GTNN
\(x+\dfrac{2m+2}{2m+1}\) và \(y=\dfrac{m}{2m+1}\)
Tìm hệ thức liên hệ giữa x và y ko phụ thuộc vào m