\(x;y\ge0;x^2+y^2=4\Rightarrow0\le x\le y\le2\)
\(P=x^3+y^3=\left(x-y\right)x^2+y\left(x^2+y^2\right)\le4\left(x-y\right)+4y=4x\le8\)
\(\Rightarrow Pmax=8\Leftrightarrow\left(x;y\right)=\left(2;0\right)=\left(0;2\right)\)
\(x;y\ge0;x^2+y^2=4\Rightarrow0\le x\le y\le2\)
\(P=x^3+y^3=\left(x-y\right)x^2+y\left(x^2+y^2\right)\le4\left(x-y\right)+4y=4x\le8\)
\(\Rightarrow Pmax=8\Leftrightarrow\left(x;y\right)=\left(2;0\right)=\left(0;2\right)\)
Cho x, y, z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=4\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x+y+z
\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện: x^2+ y^2+x^2+x^2y^2+y^2z^2+z^2x^2=6. \text{Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}}\)\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}\)
Cho các số thực x,y không âm thỏa mãn điều kiện .Hãy tìm giá trị lớn nhất của biểu thức .
Cho x,y,z là các số thực không âm thỏa mãn \(x\le1,y\le1,z\le1\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=\frac{3}{2}\) . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x + y + z ?
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho các số thực không âm x, y, z thỏa mãn \(x^2+y^2+z^2=2\). Tìm giá trị lớn nhất của biểu thức: \(M=\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\)
Cho hai số thực không âm x và y thỏa mãn điều kiện \(x^2+y^2=1\).Hãy tìm giá trị lớn nhất của biểu thức:
\(A=xy+max\left\{x,y\right\}\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
Cho các số thực không âm x, y thỏa mãn x2 + 4y=8. Tìm giá trị nhỏ nhất của biểu thức P= x + y + 10/(x+y)