Cho đường tròn ( O ; R ) đường kính AB. Lấy điểm M đối xứng với B qua A. Từ M kẻ tiếp tuyến MC với đường tròn ( C là tiếp điểm ). Kẻ dây CD vuông góc với AB qua H
a) C/m : OM là tia phân giác của góc COD
b) C/m : MD là tiếp tuyến của đường tròn ( O )
c) C/m : các hệ thức \(MD^2\)= MH . MO và AM\(^2\)= 4OH . OM
d) Kẻ một tiếp tuyến tại A với đường tròn, tiếp tuyến này cắt MC và MD lần lượt tại E và F. C/m : ME = MF
c) Tứ giác MEBF là hình gì? Vì sao?
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
b) Kẻ đường kính CE của đường tròn (O). Tính MC, DE theo R.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
a) Chứng minh MD là tiếp tuyến của đường tròn (O).
cho đường tròn (o), đường kính AB gọi H là trung điểm của OA, qua H kẻ đường thẳng vuông góc với AB cắt đường tròn (o) tại hai điểm(o) C và D. qua D kẻ tiếp tiếp tuyến với đường tròn (o) cắt tia OA tại M. chứng minh MC là tiếp tuyến của đường tròn (o)
Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M (M khác A). Từ M vẽ tiếp tuyến thứ hai MC với đường tròn (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H thuộc AB), MB cắt đường (O) tại điểm thứ hai là K và cắt CH tại P.
1) Chứng minh AKPH là tứ giác nội tiếp
2) Chứng minh KAC = OMB
3) Chứng minh P là trung điểm của CH.
) Cho (O;R) và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA; MB với đường tròn (A,B là tiếp điểm). MO cắt AB tại H. Vẽ đường kính AC của đường tròn, MC cắt đường tròn tại điểm thứ hai là N.
a) Chứng minh MO vuông góc với AB
b) Gọi I là trung điểm của NC, OI cắt AB tại K. Chứng minh OI.OK = R2 và KC là tiếp tuyến của (O)