Từ điểm M nắm ngoài (O;R) , vẽ 2 tiếp tuyến MA , MB , vẽ cát tuyến MCD (O nằm ngoài góc AMO ). Gọi H là giao điểm của OM và AB .
a) c/m tứ giác MAOB nội tiếp và OM vuông góc AB tại H .
b) c/m MC.MD=MA.MB .
c) c/m tứ giác CHOD nội tiếp , từ đó suy ra HA là tia phân giác của góc CHD
giải giúp mik nha cảm ơn
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM⊥AB
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA
hay \(MA^2=MC\cdot MD\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)