a: Xét tứ giác BOCH có
BO//CH
BH//CO
OB=OC
=>BOCH là hình thoi
b: BOCH là hình thoi
=>OH là trung trực của BC
AB=AC
=>A nằm trên trung trực của BC
=>A,O,H thẳng hàng
a: Xét tứ giác BOCH có
BO//CH
BH//CO
OB=OC
=>BOCH là hình thoi
b: BOCH là hình thoi
=>OH là trung trực của BC
AB=AC
=>A nằm trên trung trực của BC
=>A,O,H thẳng hàng
Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là các tiếp điểm). Kẻ BE ⊥ AC và CF ⊥ AB (E ∈ AC, F ∈ AB), BE và CF cắt nhau tại H
a, Chứng minh tứ giác BOCH là hình thoi
b, Chứng minh ba điểm A, H, O thẳng hàng
c, Xác định vị trí điểm A để H nằm trên (O)
Từ một điểm A ở ngoài đường thẳng (O;R) kẻ 2 tiếp tuyến AB,AC(với B,C là các tiếp điểm). Kẻ BE vuông góc với AC, CF vuông góc với AB(E thuộc AC; F thuộc AB), BE và CF cắt nhau tại H
a, Chứng minh tứ giác BOCH là hình thoi
b, Chứng minh 3 điểm A,H,O thẳng hàng
c, Xác định vị trí điểm A để H nằm trên (O)
Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là các tiếp điểm). Kẻ
BE vuông AC và CF vuông AB ( E thuộc AC, F thuộc AB ), BE và CF cắt nhau tại H.
1. Chứng minh tứ giác BOCH là hình thoi.
2. Chứng minh ba điểm A, H, O thẳng hàng.
Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là các tiếp điểm). Kẻ
BE vuông AC và CF vuông AB ( E thuộc AC, F thuộc AB ), BE và CF cắt nhau tại H.
1. Chứng minh tứ giác BOCH là hình thoi.
2. Chứng minh ba điểm A, H, O thẳng hàng.
Cho đường tròn (O), từ điểm A nằm ngoài đường tròn, kẻ 2 tiếp tuyến AB, AC ( B, C là các tiếp điểm. OA cắt BC tại E
a) Chứng minh tứ giác ABOC nội tiếp
b) \(BC\perp OA;BA.BE=AE.BO\)
c) GỌi I là trung điểm BE, đường thẳng qua I và vuông góc với OI cắt các tia AB, AC theo thứ tự tại D và F. Chứng minh:\(\widehat{IDO}=\widehat{BCO}\)và tam giác DOF cân tại O
d) Chứng minh F là trung điểm AC
Cho điểm A nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Vẽ đường kính CE của (O). Gọi H là giao điểm của OA và BC. a) Chứng minh tứ giác ABOC nội tiếp và BE // OA. b) AE cắt (O) tại D (khác E), BD cắt OA tại M. Chứng minh MAD MBA vàAH AC D D . c) Vẽ EI vuông góc với OA tại I; vẽ DK là đường kính của (O). Chứng minh 3 điểm K, I, B thẳng hàng.
Cho đường tròn (O;R) có đường kính AB. Từ điểm C nằm ngoài (O) kẻ cát tuyến CNM vuông góc với AB tại H (H nằm giữa O và B); AC cắt đường tròn (O;R) tại điểm K khác A, hai dây MN và BK cắt nhau ở E
a) CM: tứ giác AHEK nội tiếp đường tròn
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: tam giác NKF cân
Cho điểm A nằm ngoài đường tròn (O).Từ A kẻ hai tiếp tuyến AB,AC và cát tuyến ADE tới đường tròn (B,C là hai tiếp điểm;D nằm giữa A&E).Gọi H là giao điểm của AO và BC
a,Chứng minh rằng :ABOC là tứ giác nội tiếp
b,Chứng minh rằng :AH.AO=AD.AE
c,Tiếp tuyến tại D của đường tròn (O)cắt AB,AC theo thứ tự tại I và K.Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q.Chứng minh rằng IP+KQ>=PQ
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.