1: Xét tứ giác BOCH có
BO//CH
OC//HB
Do đó: BOCH là hình bình hành
mà OB=OC
nên BOCH là hình thoi
1: Xét tứ giác BOCH có
BO//CH
OC//HB
Do đó: BOCH là hình bình hành
mà OB=OC
nên BOCH là hình thoi
Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là các tiếp điểm). Kẻ
BE vuông AC và CF vuông AB ( E thuộc AC, F thuộc AB ), BE và CF cắt nhau tại H.
1. Chứng minh tứ giác BOCH là hình thoi.
2. Chứng minh ba điểm A, H, O thẳng hàng.
Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là các tiếp điểm). Kẻ BE ⊥ AC và CF ⊥ AB (E ∈ AC, F ∈ AB), BE và CF cắt nhau tại H
a, Chứng minh tứ giác BOCH là hình thoi
b, Chứng minh ba điểm A, H, O thẳng hàng
c, Xác định vị trí điểm A để H nằm trên (O)
Từ một điểm A ở ngoài đường thẳng (O;R) kẻ 2 tiếp tuyến AB,AC(với B,C là các tiếp điểm). Kẻ BE vuông góc với AC, CF vuông góc với AB(E thuộc AC; F thuộc AB), BE và CF cắt nhau tại H
a, Chứng minh tứ giác BOCH là hình thoi
b, Chứng minh 3 điểm A,H,O thẳng hàng
c, Xác định vị trí điểm A để H nằm trên (O)
Cho (O; R) và một điểm A nằm ngoài (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của (O) (B là tiếp điểm)
a) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R.
b) Từ B kẻ dây cung BC của (O) vuông góc với cạnh OA tại H. chứng minh AC là tiếp tuyến của (O)
c) Chứng minh tam giác ABC đều
d) Từ H kẻ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của OB. Chứng minh ba điểm A, E, F thẳng hàng.
Cho đường tròn (O;R) có đường kính AB. Từ điểm C nằm ngoài (O) kẻ cát tuyến CNM vuông góc với AB tại H (H nằm giữa O và B); AC cắt đường tròn (O;R) tại điểm K khác A, hai dây MN và BK cắt nhau ở E
a) CM: tứ giác AHEK nội tiếp đường tròn
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: tam giác NKF cân
Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE^2.3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ.Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
Cho đường tròn (O,R) và điểm A ở ngoài đường tròn với OA>2R. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B,C là tiếp điểm). Vẽ dây BE của đường tròn (O) song song với AC;AE cắt (O) tại D khác E; BD cắt AC tại S. Gọi M là trung điểm của đoạn DE.
a) Chứng minh: A,B,C,O,M cùng thuộc một đường tròn và SC^2=SB.SD
b) Tia BM cắt (O) tại K khác B. Chứng minh: CK song song với DE.
c) Chứng minh tứ giác MKCD là một hình bình hành.
d) Hai đường thẳng DE và BC cắt nhau tại V; đường thẳng SV cắt BE tại H.
Chứng minh: Ba điểm H, O, C thẳng hàng.