Đáp án A
n → = − 1 ; 1 ; 0 là một VTPT của mặt phẳng 2 x − 2 y + 3 = 0 .
Đáp án A
n → = − 1 ; 1 ; 0 là một VTPT của mặt phẳng 2 x − 2 y + 3 = 0 .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): -2x+y-3z+1=0. Một véctơ pháp tuyến của mặt phẳng (P) là
A. n → = 2 ; - 1 ; - 3
B. n → = 4 ; - 2 ; 6
C. n → = - 2 ; - 1 ; 3
D. n → = - 2 ; 1 ; 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : − 2 x + y − 3 z + 1 = 0. Một véctơ pháp tuyến của mặt phẳng (P) là
A. n → = − 2 ; − 1 ; 3
B. n → = − 2 ; 1 ; 3
C. n → = 2 ; − 1 ; − 3
D. n → = 4 ; − 2 ; 6
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x - 2 1 = y - 2 1 = z - 1 2 và mặt phẳng (α):x+y+z-1=0. Gọi d là đường thẳng nằm trên (α) đồng thời cắt đường thẳng ∆ và trục Oz. Một véctơ chỉ phương của d là:
A. u → = 1 ; - 2 ; 1
B. u → = 1 ; 1 ; - 2
C. u → = 2 ; - 1 ; - 1
D. u → = 1 ; 2 ; - 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − z + 1 = 0. Tọa độ một
véctơ pháp tuyến của mặt phẳng P là
A. n → = 2 ; − 1 ; 1
B. n → = 2 ; 0 ; 1
C. n → = 2 ; 0 ; − 1
D. n → = 2 ; − 1 ; 0
Trong không gian với hệ tọa độ (Oxyz), cho đường thẳng d : x 1 = y - 1 2 = z + 1 1 và mặt phẳng (P): x + y + z - 2 = 0. Gọi d' là đường thẳng vuông góc d và song song với mp(P). Véctơ chỉ phương của d' là:
A. u → = 0 ; - 1 ; 1
B. u → = 1 ; 0 ; - 1
C. u → = 2 ; - 1 ; - 1
D. u → = 1 ; 1 ; - 2
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng P : − 2 x + y − 3 z + 1 = 0. Một véctơ pháp tuyến của mặt phẳng (P) là:
A. n → = − 2 ; − 1 ; 3
B. n → = − 2 ; 1 ; 3
C. n → = 2 ; − 1 ; − 3
D. n → = 4 ; − 2 ; 6
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 2 = y - 2 - 2 = z + 1 - 1 và
d 2 : x = t y = 0 z = - t .
Mặt phẳng (P) qua d 1 và tạo với d 2 một góc 45 ° và nhận véctơ n → = 1 ; b ; c làm véc tơ pháp tuyến. xác định tích bc.
A. - 4 hoặc 0
B. 4 hoặc 0
C. - 4
D. 4
Trong không gian Oxyz, cho đường thẳng d vuông góc với mặt phẳng (P): x-y+2z+1=0 Một véctơ chỉ phương của d có tọa độ là
A. (1;-1;2)
B. (1;1;-2)
C. (1;1;2)
D. (-1;-1;2).
Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x - z + 1 = 0 Véctơ pháp tuyến của mặt phẳng (P) có tọa độ là
A. (3;0; - 1)
B. (3; - 1;1)
C. (3; - 1;0)
D. ( - 3;1;1)