Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A 1 ; 1 ; - 2 Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x - 2 1 = y - 2 1 = z - 1 2 và mặt phẳng (α):x+y+z-1=0. Gọi d là đường thẳng nằm trên (α) đồng thời cắt đường thẳng ∆ và trục Oz. Một véctơ chỉ phương của d là:
A. u → = 1 ; - 2 ; 1
B. u → = 1 ; 1 ; - 2
C. u → = 2 ; - 1 ; - 1
D. u → = 1 ; 2 ; - 3
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( α ) :x+y-z+1=0 và đường thẳng d: x - 1 1 = y - 2 2 = z - 3 3 . Đường thẳng Δ qua điểm A(1;0;2) và có véctơ chỉ phương u → (a;b;1), cách đường thẳng d một khoảng bằng
A. 3 3
B. 3
C. 2 2
D. 2
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1), mặt phẳng (P): x–2y+z-1=0 và đường thẳng d: x 1 = y - 2 2 = z + 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
A. x - 1 1 = y + 1 1 = z - 1 1
B. x - 1 15 = y + 1 7 = z - 1 1
C. x - 1 4 = y + 1 1 = z - 1 - 2
D. x - 1 13 = y + 1 6 = z - 1 - 1
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)