Trong không gian với hệ tọa độ Oxyz, cho ba điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c là những số dương thay đổi sao cho a 2 + b 2 + c 2 = 3 . Khi khoảng cách từ O đến mặt phẳng (ABC) là lớn nhất, tổng a + b + c là
A. 1
B. 3
C. 2
D. 3 2
Trong không gian Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là các số thực dương thay đổi thoả mãn a + b + c = 3 Khoảng cách từ gốc toạ độ O đến mặt phẳng (ABC) có giá trị lớn nhất bằng
A. 3
B. 1 3
C. 3 3
D. 3 3
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Chọn đẳng thức không đúng khi nói về a, b, c?
A. a + b + c = 12
B. a 2 + b = c + 6
C. a + b + c = 18
D. a + b - c = 0
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(–1; –2;0), B(0; –4;0), C(0;0; –3). Phương trình mặt phẳng (P) nào dưới đây đi qua A, gốc tọa độ O và cách đều hai điểm B và C?
A. (P): 6x – 3y + 5z = 0
B. (P): 6x – 3y + 4z = 0
C. (P): 2x – y – 3z = 0
D. (P): 2x – y + 3z = 0
Trong không gian với hệ tọa độ Oxyz lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0 , b > 0 , c > 0 và 1 a + 1 b + 1 c = 2 . Khi a, b, c thay đổi, mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ
A. (1;1;1)
B. (2;2;2)
C. 1 2 ; 1 2 ; 1 2
D. - 1 2 ; - 1 2 ; - 1 2
Trong không gian với hệ trục tọa độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c dương. Biết A, B, C di động trên các tia Ox, Oy, Oz sao cho a + b + c = 2. Biết rằng a, b, c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M(2016;0;0) tới mặt phẳng (P).
A. 2017
B. 2014 3
C. 2016 3
D. 2015 3
Trong không gian với hệ tọa độ Oxyz, xét các điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a, b, c khác 0 và a + 2 b + 2 c = 6 . Biết rằng khi a, b, c thay đổi thì quỹ tích tâm mặt cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P) cố định. Tính khoảng cách từ điểm O đến mặt phẳng (P)
A. d = 1
B. d = 3
C. d = 2
D. d = 3