Trong không gian Oxyz, cho A(2;0;0); B(0;4;0); C(0,0,6); D(2,4,6). Gọi (P) là mặt phẳng song song với mp (ABC); (P) cách đều D và mặt phẳng (ABC). Phương trình của (P) là:
A. 6 x + 3 y + 2 z - 24 = 0
B. 6 x + 3 y + 2 z - 12 = 0
C. 6 x + 3 y + 2 z = 0
D. 6 x + 3 y + 2 z - 36 = 0
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cos φ với φ là góc tạo bởi (SAC) và (SCD).
A. 2 7
B. 6 7
C. 3 7
D. 5 7
Trong không gian với hệ trục Oxyz, mặt phẳng đi qua các điểm A(2;0;0), B(0;3;0), C(0;0;4) có phương trình là
A. 6x + 4y + 3z + 12 = 0
B. 6x + 4y + 3z = 0
C. 6x + 4y + 3z - 12 = 0
D. 6x + 4y + 3z - 24 = 0
Trong không gian tọa độ Oxyz, cho mặt phẳng P : 2 x - 2 y + z - 4 = 0 và mặt phẳng Q : x + y - 3 z - 5 = 0 . Gọi φ là góc giữa hai mặt phẳng P và Q . Khẳng định nào sau đây là đúng?
A. φ ≈ 72 ° 27 '
B. φ ≈ 36 ° 28 '
C. P ⊥ Q
D. (P)//(Q)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x − 2 = y − 2 2 = z − 1 3 và đường thẳng d 2 : x = 2 + t y = 1 − 2 t z = t . Gọi φ là góc giữa hai đường thẳng d 1 và d 2 . Tính xấp xỉ φ .
A. φ ≈ 62 0 53 '
B. φ ≈ 72 0 43 '
C. φ ≈ 36 0 40 '
D. Đáp án khác
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2;0;0); B(0;3;0); C(0;0;4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH
A. x = 4 t y = 3 t z = - 2 t
B. x = 3 t y = 4 t z = 2 t
C. x = 6 t y = 4 t z = 3 t
D. x = 4 t y = 3 t z = 2 t
Trong không gian với hệ tọa độ Oxyz, phương trình ( α ) mặt phẳng A ( 0 ; − 1 ; 0 ) , B ( 2 ; 0 ; 0 ) ; C ( 0 ; 0 ; 3 ) đi qua điểm là
A. x 2 + y 1 + z 3 = 1.
B. x 2 + y − 1 + z 3 = 0.
C. x − 1 + y 2 + z 3 = 1.
D. x 2 + y − 1 + z 3 = 1.
Trong không giam Oxyz, cho mặt phẳng (P) có phương trình 2x-y+2z+1=0, đường thẳng d có phương trình x - 1 - 1 = y - 2 = z + 2 2 . Gọi φ là góc giữa đường thẳng d và mặt phẳng (P). Tính giá trị cos φ
A. cos φ = 6 / 9
B. cos φ = 65 9
C. cos φ = 9 65 65
D. cos φ = 4 / 9
Cho hình lập phương ABCD. A ' B ' C ' D ' , gọi φ là góc giữa hai mặt phẳng ( A ' BD) và (ABC). Tính tan φ
A. tan φ = 1 2
B. tan φ = 2
C. tan φ = 2 3
D. tan φ = 3 2