Trong không gian Oxyz cho các mặt phẳng (P): x-y+2z+1 = 0,(Q):2x+y+z-1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3
B. r = 2
C. r = 3 2
D. r = 3 2 2
Trong không gian Oxyz, mặt cầu tâm I(1;2;-1) cắt mặt phẳng (P): 2x-y+2z-1=0 theo một đường tròn có bán kính bằng 8 có phương trình là:
A. x + 1 2 + ( y + 2 ) 2 + z - 1 2 = 9
B. x + 1 2 + ( y - 2 ) 2 + z + 1 2 = 9
C. x - 1 2 + ( y - 2 ) 2 + z + 1 2 = 3
D. x + 1 2 + ( y + 2 ) 2 + z - 1 2 = 3
Trong không gian Oxyz, mặt cầu tâm I(1;2;-1) và cắt mặt phẳng P : 2 x − y + 2 z − 1 = 0 theo một đường tròn bán kính bằng 8 có phương trình là:
A. x − 1 2 + y − 2 2 + z + 1 2 = 3
B. x + 1 2 + y + 2 2 + z − 1 2 = 9
C. x − 1 2 + y − 2 2 + z + 1 2 = 9
D. x + 1 2 + y + 2 2 + z − 1 2 = 3
Trong không gian Oxyz cho hai mặt phẳng P : x - y + 2 z + 1 = 0 và Q : 2 x + y + z - 1 = 0 . Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2, (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa mãn yêu cầu.
A. r = 3
B. r = 3 2
C. r = 2
D. r = 3 2 2
Trong không gian Oxyz cho các mặt phẳng P : x − y + 2 z + 1 = 0 , Q : 2 x + y + z − 1 = 0 Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3 .
B. r = 2 .
C. r = 3 2 .
D. r = 3 2 2 .
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x − y + 2 z + 1 = 0 và ( Q ) : 2 x + y + z − z = 0. Gọi (S) là mặt cầu có tâm thuộc Ox, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có duy nhất một mặt cầu (S) thỏa mãn điều kiện bài toán
A. r = 3 2 2 .
B. r = 10 2 .
C. r = 3 .
D. r = 14 2 .
Trong không gian với hệ tọa độ Oxyz, mặt cầu tâm I(1;2;-1) và cắt mặt phẳng (P): 2x-y+2z-1=0 theo một đường tròn có bán kính bằng 8 có phương trình là
A. ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 9
B. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 9
C. ( x + 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 3
D. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 3
Trong không gian Oxyz, cho đường thẳng △ : x - 3 1 = y - 1 3 = z - 2 - 1 . Có tất cả bao nhiêu giá trị thực của m để phương trình x 2 + y 2 + z 2 - 4 z + 2 m y - 2 m + 1 z + m 2 + 2 m + 8 = 0 là phương trình của một mặt cầu (S) sao cho có duy nhất một mặt phẳng chứa Δ và cắt (S) theo giao tuyến là một đường tròn có bán kính bằng 1.
A. 1
B. 6.
C. 7.
D. 5.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-2=0 và điểm I(-1;2;-1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5
A. ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 1 ) 2 = 34
B. ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 16
C. ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 25
D. ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 34