a) \(2x^2y+\dfrac{2}{3}x^2y+\left(-\dfrac{1}{3}\right)x^2y\)
\(=\left(2+\dfrac{2}{3}+-\dfrac{1}{3}\right)x^2y\)
\(=\dfrac{7}{3}x^2y\)
b) \(2x^2y^2+3x^2y^2+x^2y^2\)
\(=\left(2+3+1\right)x^2y^2\)
\(=6x^2y^2\)
a) \(2x^2y+\dfrac{2}{3}x^2y+\left(-\dfrac{1}{3}\right)x^2y\)
\(=\left(2+\dfrac{2}{3}+-\dfrac{1}{3}\right)x^2y\)
\(=\dfrac{7}{3}x^2y\)
b) \(2x^2y^2+3x^2y^2+x^2y^2\)
\(=\left(2+3+1\right)x^2y^2\)
\(=6x^2y^2\)
Rút gọn các biểu thức sau:
a/\(\left(x+\dfrac{1}{3}x+\dfrac{1}{9}\right)\left(x-\dfrac{1}{3}\right)-\left(x-\dfrac{1}{3^{ }}\right)^2\)
b/\(\left(x_{ }^2-2\right)^3-x\left(x+1\right)\left(x-1\right)+x\left(x-3\right)\)
MẤY BẠN GIÚP MK VS Ạ AI NHANH MK VOTE NHA
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
bài 1:
a) (2x3 - x2 + 5x) : x b) (3x4 - 2x3 + x2) : (-2x) c) (-2x5 + 3x2 - 4x3) : 2x2
d) (x3 - 2x2y + 3xy2) : \(\left(-\dfrac{1}{2}x\right)\) e) [ 3(x-y)5 - 2(x-y)4 + 3(x-y)2] : 5(x-y)2
a) (3x5 y2 +4x3y3-5x2y4 ) :2x2y2
khai triển các hằng đẳng thức sau:
a. \(\left(2xy-3\right)^2\)
b. \(\left(\dfrac{1}{2}x+\dfrac{1}{3}\right)^2\)
1.Tính tích các đơn thức sau:
a) 3xy3 và x4y2
b) \(\dfrac{12}{15}\)x4y2 và -5xy3
c) -\(\dfrac{1}{7}\)x2y và -\(\dfrac{2}{5}\)xy4
Quy đồng mẫu các phân thức sau:
a)\(\dfrac{x}{x-y}\); \(\dfrac{y}{\left(x-y\right)^2}\) ; \(\dfrac{1}{\left(y-x\right)^3}\)
b) \(\dfrac{1}{2x+4};\dfrac{x}{2x-4};\dfrac{3}{4-x^2}\)
Quy đồng mẫu các phân thức sau:
a)\(\dfrac{x}{x-y};\dfrac{y}{\left(x-y\right)^2};\dfrac{1}{\left(y-x\right)^3}\)
b) \(\dfrac{1}{2x+4};\dfrac{x}{2x-4};\dfrac{3}{4-x^2}\)
Rút gọn các phân thức sau:
a) \(\dfrac{6x^2y^2}{8xy^{ }5}\)
b) \(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
c) \(\dfrac{2x^2+2x
}{x+1}\)
d) \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
e) \(\dfrac{36\left(x-2\right)^3}{32-16x}\)
Cho các số x, y > 0. Tìm GTNN của các biểu thức sau:
a, A = \(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{2xy}{x^2+y^2}\)
b, B = \(\dfrac{\left(x-y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}\)