\(C=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=99+95+...+3\)
\(=1275\)
Vậy C = 1275
\(C=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right).\)
\(C=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(C=50+49+48+....+2+1\)
\(C=\dfrac{\left(1+50\right).50}{2}=1275.\)
C = (502 - 492) + (482 - 472) + ... + (22 - 12)
C = (50 - 49)(50 + 49) + (48 - 47)(48 + 47) + ... + (2 - 1)(2 + 1)
C = 99 + 97 + ... + 3 (bước này dễ, tự trình bày)
C = 2499
\(C=50^2-49^2+48^2-47^2+....+2^2-1^2\)
\(C=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+.....+\left(2+1\right)\left(2-1\right)\)
\(C=50+49+48+47+......+2+1\)
\(C=\left(50+1\right).25\)
\(\Rightarrow C=1275\)