Thay x = \(\sqrt{2}\)ta được
\(A=\sqrt{3.2-2\sqrt{2}-2-1}=\sqrt{3-2\sqrt{2}}=\sqrt{2}-1\)
Thay x = \(\sqrt{2}\)ta được
\(A=\sqrt{3.2-2\sqrt{2}-2-1}=\sqrt{3-2\sqrt{2}}=\sqrt{2}-1\)
a) Với giá trị nào của x thì các biểu thức sau đây xác định :
\(\sqrt{3x+4}\) \(\sqrt{\dfrac{-1}{2x+2}}\)
b) Rút gọn biểu thức B = \(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\) với x ≥ 0 , x ≠ 1
c) Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
D = \(\dfrac{2\sqrt{x-1}}{\sqrt{x}+3}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Tính giá trị của biểu thức N=x^2019 +3x^2020-2x^2021 với x=\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{ }2}\)
Cho biểu thức A= \(\dfrac{x}{\sqrt{x-1}}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với \(x>0\) và \(x\ne1\).
a) rút gọn biểu thức A.
b) Tính giá trị của biểu thức A tại x= \(3+2\sqrt{2}\)
Bài 1 Cho biểu thức : A = \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với ( x >0 và x ≠ 1)
a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại .\(x=3+2\sqrt{2}\)
Tính giá trị của biểu thức \(B=\dfrac{4x^{2024}\left(x+1\right)-2x^{2023}+2x+1}{2x^2+3x}\) tại \(x=\sqrt{\dfrac{1}{2\sqrt{3}}-\dfrac{3}{2\sqrt{3}+2}}\)
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
Cho biểu thức \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) với x > 0
a, Rút gọn biểu thức P
b, Tính giá trị của biểu thức P khi \(x=\dfrac{\sqrt{3-\sqrt{2}}+\sqrt{6-2\sqrt{7}}}{\sqrt{3+\sqrt{2}}}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1