\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0
\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right)\):\(\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
1. Rút gọn biểu thức P
2. Tính giá trị của P biết x=\(\sqrt{7+4\sqrt{3}}\)+\(\sqrt{7-4\sqrt{3}}\)
20 P=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
a. Rút gọn biểu thức P
b. tính giá trị của biểu thức P khi x=9
c. tìm giá trị x để P=3
Cho biểu thức \(P=\left(\dfrac{\sqrt{x-2}}{x-1}-\dfrac{\sqrt{x+2}}{x+2\sqrt{x+1}}\right):\left(\dfrac{2}{x^2-2x+1}\right)\) với \(x\ge0;x\ne1\)
`a)` Rút gọn `P`
`b)` Tìm các giá trị của `x` để `P>0`
`c)` Tính giá trị của `P` khi \(x=7-4\)\(\sqrt{3}\)
`d)` Tìm GTLN của `P` và giá trị tương ứng của `x`
1) Tính giá trị của biểu thức : A= 3\(\sqrt{\dfrac{1}{3}}\) - \(\dfrac{5}{2}\)\(\sqrt{12}\) - \(\sqrt{48}\)
2) Tìm x để biểu thức sau có nghĩa : A=\(\sqrt{12-4x}\)
3) Rút gọn biểu thức : P= \(\dfrac{2x-2\sqrt{x}}{x-1}\) với x≥0 và x ≠1
Tìm x
a)\(\sqrt{2x-1}=3\)
b)\(\sqrt{1-3x}=\dfrac{1}{2}\)
c)\(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)
d)\(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)
e)\(\sqrt{\left(1-2x\right)^2=|x-1|}\)
cho A=\(\left(\dfrac{3x+3}{x-9}-\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
tính x để A\(>\dfrac{1}{2}\)
tính giá trị nguyên của x để biểu thức Q= \(\dfrac{2P\sqrt{x}}{3}\) nhận giá trị nguyên
P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a)tìm điều kiện để P có nghĩa
b)rút gọn P
c)tính giá trị của P với x=\(3+2\sqrt{2}\)
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)