\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^n}\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{n-1}}\)
\(\Rightarrow A=2A-A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{n-1}}-1-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^n}=2-\dfrac{1}{2^n}\)