Áp dụng BĐT \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\) ta có:
\(VT_{Pt\left(2\right)}=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=0,75=VP_{Pt\left(2\right)}\)
Xảy ra khi \(x=y=z=\dfrac{1}{2}\)
Áp dụng BĐT \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\) ta có:
\(VT_{Pt\left(2\right)}=x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=0,75=VP_{Pt\left(2\right)}\)
Xảy ra khi \(x=y=z=\dfrac{1}{2}\)
Tìm x,y,z biết x+y+z=6 và x^2+y^2+z^2=12
Tìm x,y,z biết :
a, (x-z)^2 + (y-z)^2 + y^2+z^2 = 2xy-2yz+6z-9
b, x^2 + 3y^2 + z^2 + 2xy-2yz-2x+4y+10=0
rút gọn biểu thức :
a,[x+y]^2.[x-y]^2
b,2.[x-y][x+y]+[x+y]^2+[x-y]^2
c,[x-y+z]^2+[z-y]^2+2.[x-y+z][y-z]
Cho x,y,z khác 0 và x+y+z=0 . Tính:
A=\(\dfrac{x^2}{y^2+z^2-x^2}+\dfrac{y^2}{z^2+x^2-y^2}+\dfrac{z^2}{x^2+y^2-z^2}\)
Chứng minh rằng nếu:
(x-y)2+(y-z)2+(x-z)2=(x+y-2z)2+(z+x-2y)2+(y+z-2x)2thì x=y=z
(x-y+x)2 + (z-y)2 + 2(x-y+z)(y+z)
Chứng minh rằng nếu:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)thì x=y=z
Rút gon
A= (x−y)^2+(x+y)^2+(x−y)(x+y)
B=(x−y)^2+(−x+y−z)^2+2(x−y)(−x+y−z)
Hệ số của x2 trong biểu thức (x – y + z)2 + (z - y)2 + 2(x – y + z)(y – z) là: …
Giúp mik với ạ.