\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-14y+49\right)=0\\ \Leftrightarrow\left(x+y\right)^2+\left(y-7\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=7\end{matrix}\right.\)
Ta có: x2+2y2+2xy-14y+49=0
⇔ (x2+2xy+y2)+(y2-14y+49)=0
⇔ (x+y)2+(y-7)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=7\end{matrix}\right.\)