Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Haruno :3

Tìm x,y thoả mãn: y2+2xy-12x+4(x+y)+2x2+40=0

Nguyễn Việt Lâm
12 tháng 9 2021 lúc 21:15

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)

Nguyen Minh Hieu
12 tháng 9 2021 lúc 21:21

\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\) 

Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)

Dấu"=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)

Vậy x = 6 và y = -8

 

 

 


Các câu hỏi tương tự
Haruno :3
Xem chi tiết
Haruno :3
Xem chi tiết
Dương Tuấn Minh
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Trương Quỳnh Hoa
Xem chi tiết
Trịnh Minh Trí
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Phạm Ngô Bảo Trâm
Xem chi tiết
Pham Trong Bach
Xem chi tiết