ta có : \(a^2=b^3\) chỉ có nghiệm a=b={0,1}
\(\left\{\begin{matrix}10x+y=0\\x+y=0\end{matrix}\right.\Rightarrow x=y=0\)
\(\left\{\begin{matrix}10x+y=+-1\\x+y=1\end{matrix}\right.\Rightarrow x=0;y=1}\)
ta có : \(a^2=b^3\) chỉ có nghiệm a=b={0,1}
\(\left\{\begin{matrix}10x+y=0\\x+y=0\end{matrix}\right.\Rightarrow x=y=0\)
\(\left\{\begin{matrix}10x+y=+-1\\x+y=1\end{matrix}\right.\Rightarrow x=0;y=1}\)
1) cho a,b,c dương thỏa a+b+c=1 CMR \(\sqrt{\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)}=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
2) cho x,y dương thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) .tính tổng x+y
3) ghpt \(\left\{{}\begin{matrix}x^2+2y^2=2\\3x^2+4xy+4x+3y=y^2-4\end{matrix}\right.\)
4) gpt \(\sqrt{x^2+3}+\dfrac{4x}{\sqrt{x^2+3}}=5\sqrt{x}\)
1) cho x,y,z là các số thực thỏa mãn \(\left\{{}\begin{matrix}xyz=2\\2+x+xy\ne0\end{matrix}\right.\)
tính B= \(\dfrac{1}{1+y+yz}+\dfrac{2}{2+2z+xz}+\dfrac{2}{2+x+xy}\)
2) giải hpt \(\left\{{}\begin{matrix}\left(y^2-4y\right)\left(2y-x\right)=2\\y^2-2y-x=3\end{matrix}\right.\)
3)GPT \(x^2-2x=2\sqrt{2x-1}\)
4) tìm n nguyên dương để A=\(2^9+2^{13}+2^n\) là số chính phương
5) tìm Min của A=\(\dfrac{\left(x+y+1\right)^2}{xy+y+x}+\dfrac{xy+y+x}{\left(x+y+1\right)^2}\) (x;y dương )
1)cho a,b,c>0 CMR \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
2)tìm x,y nguyên dương thỏa \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4xy+9\)
3) ghpt a) \(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^4+3=4y\\y^4+3=4x\end{matrix}\right.\)
1) cho \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\) . tính M = \(x^2+y^2\)
2) tìm các cặp x,y thỏa mãn \(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
3) tìm các cặp x,y nguyên thỏa \(x^6+3x^3+1=y^4\)
Bài 1 giải hệ pt
a,\(\begin{cases}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)-11\end{cases}\)
Cho hai số thực dương x,y thỏa mãn \(x+y+1=3xy\)
Tìm GTLN của:
\(M=\dfrac{3x}{y\left(x+1\right)}+\dfrac{3y}{x\left(y+1\right)}-\dfrac{1}{x^2}-\dfrac{1}{y^2}\)
Tìm các số dương x,y, z thỏa
\(\left\{{}\begin{matrix}x+y^2+z^3=3\\\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\end{matrix}\right.\)
1) ghpt a)\(\left\{{}\begin{matrix}2x+\dfrac{y}{\sqrt{4x^2+1}+2x}+y^2=0\\4\left(\dfrac{x}{y}\right)^2+2\sqrt{4x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)=2\left(xy-1\right)\\4x^2+y^2+2x-y-6=0\end{matrix}\right.\)
2) tìm các số nguyên x,y thỏa mãn \(x^2+y^2-xy=x+y+2\)
3) gpt \(\sqrt{2x^2-x}=2x-x^2\)
Bài 1 giải hệ phương trình
a,\(\left\{\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
b,\(\left\{\begin{matrix}\left(x+y\right)^2-4x-4y=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)