216. Cho \(A=xy-3xy\left(1+x-y\right)+x^2\left(x+1\right)-y^2\left(y-1\right)\)
a) Rút gọn A
b) Tính A khi x-y=5
giải phương trình:
a) y(x-1)=x^2+2
b) 3xy-5x-2y=3
c) x^2-10xy-11y^2=13
d) xy-2=2x+3y
e) 5xy+x+2y=7
Cho x,y là số hữu tỉ khác 1 thỏa mãn(1-2x)/(1-x)+(1-2y)/(1-y)=1
Chứng minh: M=x^2+y^2-xy là bình phương của một số hữu tỉ.
Cho biểu thức: ( với x;y ≠ 0 ; x ≠ - y )
\(P=\dfrac{2}{x}-\left(\dfrac{x^2}{x^2+xy}+\dfrac{y^2-x^2}{xy}-\dfrac{y^2}{xy+y^2}\right).\dfrac{x+y}{x^2+xy+y^2}\)
a) Rút gọn P
b) Tìm giá trị của P biết x; y thỏa mãn: x2 +y2 + 10 = 2(x - 3y )
Bài 1:
a) \(a)\left(x^2+y\right)\left(y^2+x\right)=\left(x-y\right)^2\) \(x,y\in Z\)
\(b)x^2\left(y+3\right)=yz^2\) \(x,y,z\in Z_+\)
\(c)x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\) \(x,y\in Z_+\)
\(d)x^4+x^2-y^2+y+10=0\) \(x,y\in Z\)
\(e)x^3-y^3-2y^2-3y-1=0\) \(x,y\in Z_+\)
\(f)x^4-y^4+z^4+2x^2y^2+3x^2+4z^2+1=0\) \(x,y,z\in Z\)
Rút gọn và tính gt biểu thức:
\(E=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y-1\right)+2017\) với x-y=-3
tìm nghiệm nguyên của pt:
a) y(x-1)=x^2+2
b) 3xy-5x-2y=3
c) x^2-10xy-11y^2=13
d) xy-2=2x+3y
e) 5xy+x+2y=7
Cho 3 số thực x, y, z thỏa mãn \(2x^2+y^2+z^2+2xy-2xz-10x-10y+25=0\). Tìm giá trị lớn nhất của \(A=\frac{x+y+1}{z^2-z+1}\)
cho các số x,y,z thỏa mãn \(x\ge y\ge z>0\). chứng minh bất đẳng thức: \(\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y}\ge3x-4y+z\)