a) \(A=xy-3xy\left(1+x-y\right)+x^2\left(x+1\right)-y^2\left(y-1\right)\)
\(A=xy-3xy-3x^2y+3xy^2+x^3+x^2-y^3+y^2\)
\(A=x^2-2xy+y^2+x^3-3x^2y+3xy^2-y^3\)
\(A=\left(x-y\right)^2+\left(x-y\right)^3\)
b) Khi x-y =5
<=> x= 5+y
Thay vào bt A ,ta được:
\(A=\left(5+y-y\right)^2+\left(5+y-y\right)^3\)
\(A=5^2+5^3=25+125=150\)
\(A=xy-3xy\left(1+x-y\right)+x^2\left(x+1\right)-y^2\left(y-1\right)\)
\(A=xy-3xy-3x^2y+3xy^2+x^3+x^2-y^3+y^2\)
\(A=\left(x-y\right)^3+\left(x-y\right)^2\)
\(A=\left(x-y\right)^2\left(x-y+1\right)\)
b) Với x - y = 5 ta có
\(A=5^2.6=150\)