`(2x-3)^2=(x-1)^2`
`=> (2x-3)^2 - (x-1)^2=0`
`=> (2x-3-x+1)(2x-3+x-1)=0`
`=> (x -2)(3x-4)=0`
`=> [(x-2=0),(3x-4=0):}`
`=> [(x=2),(x=4/3):}`
Vậy: `S={2;4/3}`
\(\left(2x-3\right)^2-\left(x-1\right)^2=0\)
(2x-3-x+1)(2x-3+x-1) =0
(x-4)(3x-4) = 0
Ta có 2 TH
+) TH1:
x-4=0
x=4
+) TH2:
3x-4=0
x=\(\dfrac{4}{3}\)
Vậy x=4; x=\(\dfrac{4}{3}\)