\(\left(x^2-2\right)\cdot\left(x+4\right)-4x\left(x-3\right)=-8+3x\)
$\to$ \(x^3+4x^2-2x-8-4x^2+12x+8-3x=0\)
$\to$ \(x^3+7x=0\)
$\to x.(x^2+7)=0$
$\to x=0$ ( Do $x^2+7>0$ )
Vậy $x=0$
\(\Leftrightarrow x^3-2x+4x^2-8-4x^2+12x+8-3x=0\)
\(\Leftrightarrow x^3+7x=0\)
\(\Leftrightarrow x\left(x^2+7\right)=0\)
Mà \(x^2+7\ge7>0\)
\(\Leftrightarrow x=0\)
Vậy ...
`(x^2-2)(x+4)-4x(x-3)=-8+3x`
`<=>x^3+4x^2-2x-8-4x^2+12x-3x+8=0`
`<=>x^3+7x=0`
`<=>x(x^2+7)=0`
Vì `x^2+7>=7>0`
`<=>x=0`